ON THE VARIETY GENERATED BY TOURNAMENTS

Miklós Maróti Vanderbilt University

Tournaments

Definition. A *tournament* is a commutative groupoid satisfying $xy \in \{x, y\}$ (*conservative law*). We write $x \to y$ if xy = x.

Denote by \mathcal{T} the variety generated by tournaments.

Theorem (1997). The variety \mathcal{T} is

(1) locally finite,

(2) not finitely based, and

(3) inherently non-finitely generated.

Conjecture. Every (finite) subdirectly irreducible algebra in \mathcal{T} is a tournament.

EQUATIONS

Theorem. The following four equations form a base for the 3-variable equations of tournaments:

(1) xx = x(2) xy = yx(3) (xy)x = xy(4) $(xy \cdot xz)(xy \cdot yz) = (xy)z$

Proposition. If an algebra $\mathbf{A} \in \mathcal{T}$ does not contain any 3-cycles (elements x, y, z so that $x \to y \to z \to x$) then \mathbf{A} is a semilattice.

PARTIAL RESULTS

Theorem. Every simple algebra in \mathcal{T} is a tournament.

Fact. The conjecture holds iff for all $\mathbf{A} \in \mathcal{T}$ and for all $a, b \in A$, $\operatorname{Cg}_{\mathbf{A}}(ab, a) \wedge \operatorname{Cg}_{\mathbf{A}}(ab, b) = 0_{\mathbf{A}}$.

Definition. We call an algebra $\mathbf{A} \in \mathcal{T}$ strongly connected if for any $a, b \in A$ there exists a path $a = a_0 \rightarrow a_1 \rightarrow \ldots \rightarrow a_{n-1} = b$.

Lemma. The conjecture holds iff every strongly connected, subdirectly irreducible algebra in \mathcal{T} is a tournament.

BASIC-TRANSLATIONS

Let **A** be a fixed algebra in \mathcal{T} . For a set of pairs $S \subseteq A^2$, denote by $\operatorname{Eg}_A(S)$ the smallest equivalence relation on A containing S.

Definition. For elements $x, y, u, v \in A$, the pair $\langle u, v \rangle$ is a *basic-translation* of $\langle x, y \rangle$ if there exists $z \in A$ such that $\langle u, v \rangle = \langle xz, yz \rangle$. A *basic-ideal* is a set of pairs $I \subseteq A^2$ closed under basic-translations. For $S \subseteq A^2$, denote by $Ig^{b}_{\mathbf{A}}(S)$ the smallest basic-ideal containing S.

Fact. $\operatorname{Cg}_{\mathbf{A}}(S) = \operatorname{Eg}_{A} \operatorname{Ig}_{\mathbf{A}}^{\operatorname{b}}(S)$ for all $S \subseteq A^{2}$.

CYCLE AND EDGE-TRANSLATIONS

Definition. For elements $x, y, u, v \in A$, the pair $\langle u, v \rangle$ is a cycletranslation of $\langle x, y \rangle$ if y = u and $x \to y \to v \to x$. The pair $\langle u, v \rangle$ is an edge-translation of $\langle x, y \rangle$ if $x \to y \leftarrow v$ and u = xv.

Definition. The cycle-ideal $Ig^{c}_{\mathbf{A}}(S)$, and edge-ideal $Ig^{e}_{\mathbf{A}}(S)$ generated by $S \subseteq A^{2}$ are the smallest sets $I \subseteq A^{2}$ containing S, which are closed under cycle and edge-translations, respectively.

Theorem. $\operatorname{Cg}_{\mathbf{A}}(a, b) = \operatorname{Eg}_{A} \operatorname{Ig}_{\mathbf{A}}^{c} \operatorname{Ig}_{\mathbf{A}}^{e}(a, b)$ for all pairs of elements $a, b \in A$ such that $a \to b$.

Spanning Cycle-Ideals

Definition. A spanning cycle-ideal of an algebra $\mathbf{A} \in \mathcal{T}$ is a cycle-ideal $I = \mathrm{Ig}_{\mathbf{A}}^{c}(a, b)$ generated by some pair of elements $a \to b$, which satisfies that for all $x \in A$ there is $y \neq x$ such that $\langle x, y \rangle \in I$.

Lemma. Each finite, strongly connected tournament has a spanning cycle-ideal.

Lemma. Each subdirect product of finite, strongly connected tournaments is isomorphic to a direct product of algebras, each of which has a spanning cycle-ideal.

Spanning Cycle-Ideals (cont.)

Lemma. Let $\mathbf{A}, \mathbf{B} \in \mathcal{T}$ be strongly connected algebras. Then $\operatorname{Con}(\mathbf{A} \times \mathbf{B}) \cong \operatorname{Con} \mathbf{A} \times \operatorname{Con} \mathbf{B}.$

Lemma. Each strongly connected algebra in \mathcal{T} is a homomorphic image of a subdirect product of strongly connected tournaments.

Corollary. Each finite, strongly connected algebra in \mathcal{T} is isomorphic to a direct product of algebras, each of which has a spanning cycle-ideal.

Corollary. Each finite, strongly connected, subdirectly irreducible algebra in \mathcal{T} has a spanning cycle-ideal.

OPEN PROBLEMS

Problem. Prove the conjecture.

Problem. Is the variety \mathcal{T} inherently non-finitely based?

Problem. Find a minimal list of equations, which form a base for the 4-variable equations of tournaments.

Problem. Describe the bottom of the lattice of subvarieties of \mathcal{T} .

Conjecture. Every subdirectly irreducible algebra in the variety determined by the 3-variable equations of tournaments is either a tournament, or contains a subalgebra isomorphic to \mathbf{J}_3 or \mathbf{M}_n for some $n \geq 3$ (see our paper for more details).