On the variety generated by tournaments

Miklós Maróti
Vanderbilt University

Columbia, March 16, 2001

Tournaments

Definition. A tournament is a commutative groupoid satisfying $x y \in\{x, y\}$ (conservative law). We write $x \rightarrow y$ if $x y=x$.

Denote by \mathcal{T} the variety generated by tournaments.
Theorem (1997). The variety \mathcal{T} is
(1) locally finite,
(2) not finitely based, and
(3) inherently non-finitely generated.

Conjecture. Every (finite) subdirectly irreducible algebra in \mathcal{T} is a tournament.

Columbia, March 16, 2001

Equations

Theorem. The following four equations form a base for the 3 -variable equations of tournaments:
(1) $x x=x$
(2) $x y=y x$
(3) $(x y) x=x y$
(4) $(x y \cdot x z)(x y \cdot y z)=(x y) z$

Proposition. If an algebra $\mathbf{A} \in \mathcal{T}$ does not contain any 3-cycles (elements x, y, z so that $x \rightarrow y \rightarrow z \rightarrow x$) then \mathbf{A} is a semilattice.

Columbia, March 16, 2001

Partial Results

Theorem. Every simple algebra in \mathcal{T} is a tournament.

Fact. The conjecture holds iff for all $\mathbf{A} \in \mathcal{T}$ and for all $a, b \in A$, $\mathrm{Cg}_{\mathbf{A}}(a b, a) \wedge \operatorname{Cg}_{\mathbf{A}}(a b, b)=0_{\mathbf{A}}$.

Definition. We call an algebra $\mathbf{A} \in \mathcal{T}$ strongly connected if for any $a, b \in A$ there exists a path $a=a_{0} \rightarrow a_{1} \rightarrow \ldots \rightarrow a_{n-1}=b$.

Lemma. The conjecture holds iff every strongly connected, subdirectly irreducible algebra in \mathcal{T} is a tournament.

Columbia, March 16, 2001

Basic-Translations

Let \mathbf{A} be a fixed algebra in \mathcal{T}. For a set of pairs $S \subseteq A^{2}$, denote by $\operatorname{Eg}_{A}(S)$ the smallest equivalence relation on A containing S.

Definition. For elements $x, y, u, v \in A$, the pair $\langle u, v\rangle$ is a basictranslation of $\langle x, y\rangle$ if there exists $z \in A$ such that $\langle u, v\rangle=\langle x z, y z\rangle$. A basic-ideal is a set of pairs $I \subseteq A^{2}$ closed under basic-translations. For $S \subseteq A^{2}$, denote by $\operatorname{Ig}_{\mathbf{A}}^{\mathrm{b}}(S)$ the smallest basic-ideal containing S.

Fact. $\operatorname{Cg}_{\mathbf{A}}(S)=\operatorname{Eg}_{A} \operatorname{Ig}_{\mathbf{A}}^{\mathrm{b}}(S)$ for all $S \subseteq A^{2}$.

Columbia, March 16, 2001

Cycle and Edge-Translations

Definition. For elements $x, y, u, v \in A$, the pair $\langle u, v\rangle$ is a cycletranslation of $\langle x, y\rangle$ if $y=u$ and $x \rightarrow y \rightarrow v \rightarrow x$. The pair $\langle u, v\rangle$ is an edge-translation of $\langle x, y\rangle$ if $x \rightarrow y \leftarrow v$ and $u=x v$.

Definition. The cycle-ideal $\operatorname{Ig}_{\mathbf{A}}^{\mathrm{c}}(S)$, and edge-ideal $\mathrm{Ig}_{\mathbf{A}}^{\mathrm{e}}(S)$ generated by $S \subseteq A^{2}$ are the smallest sets $I \subseteq A^{2}$ containing S, which are closed under cycle and edge-translations, respectively.

Theorem. $\operatorname{Cg}_{\mathbf{A}}(a, b)=\operatorname{Eg}_{A} \operatorname{Ig}_{\mathbf{A}}^{\mathrm{c}} \mathrm{Ig}_{\mathbf{A}}^{\mathrm{e}}(a, b)$ for all pairs of elements $a, b \in A$ such that $a \rightarrow b$.

Columbia, March 16, 2001

Spanning Cycle-Ideals

Definition. A spanning cycle-ideal of an algebra $\mathbf{A} \in \mathcal{T}$ is a cycle-ideal $I=\operatorname{Ig}_{\mathbf{A}}^{\mathrm{c}}(a, b)$ generated by some pair of elements $a \rightarrow b$, which satisfies that for all $x \in A$ there is $y \neq x$ such that $\langle x, y\rangle \in I$.

Lemma. Each finite, strongly connected tournament has a spanning cycle-ideal.

Lemma. Each subdirect product of finite, strongly connected tournaments is isomorphic to a direct product of algebras, each of which has a spanning cycle-ideal.

Columbia, March 16, 2001

Spanning Cycle-Ideals (COnt.)

Lemma. Let $\mathbf{A}, \mathbf{B} \in \mathcal{T}$ be strongly connected algebras. Then $\operatorname{Con}(\mathbf{A} \times \mathbf{B}) \cong \operatorname{Con} \mathbf{A} \times \operatorname{Con} \mathbf{B}$.

Lemma. Each strongly connected algebra in \mathcal{T} is a homomorphic image of a subdirect product of strongly connected tournaments.

Corollary. Each finite, strongly connected algebra in \mathcal{T} is isomorphic to a direct product of algebras, each of which has a spanning cycle-ideal.

Corollary. Each finite, strongly connected, subdirectly irreducible algebra in \mathcal{T} has a spanning cycle-ideal.

Columbia, March 16, 2001

Open Problems

Problem. Prove the conjecture.

Problem. Is the variety \mathcal{T} inherently non-finitely based?

Problem. Find a minimal list of equations, which form a base for the 4-variable equations of tournaments.

Problem. Describe the bottom of the lattice of subvarieties of \mathcal{T}.

Conjecture. Every subdirectly irreducible algebra in the variety determined by the 3-variable equations of tournaments is either a tournament, or contains a subalgebra isomorphic to \mathbf{J}_{3} or \mathbf{M}_{n} for some $n \geq 3$ (see our paper for more details).

Columbia, March 16, 2001

